2014.5.8
第六题(python):
sum_of_squares = 0 sum_of_number = 0 for i in range(1, 101): sum_of_squares = sum_of_squares + i*i for i in range(1, 101): sum_of_number = sum_of_number + i print sum_of_number**2 - sum_of_squares
2014.5.8
第七题(python):
import math import random import sys sys.setrecursionlimit(1000000) # def is_prime(num): # i = 2 # isprime = True # while i <= int(math.sqrt(num)): # if num % i == 0: # isprime = False # break # i = i + 1 # return isprime # def is_prime(num): # if num % 2 == 0: # return False; # i = 3 # isprime = True # while i <= int(math.sqrt(num)): # if num % i == 0: # isprime = False # break; # i = i + 2 # return isprime # prime_list = [2, 3] # def is_prime(num): # isprime = True # i = 0 # while i < len(prime_list): # if num % prime_list[i] == 0: # isprime = False # break # i = i + 1 # return isprime prime_list = [2, 3] def is_prime(num): isprime = True i = 0 while i < len(prime_list) and prime_list[i] <= int(math.sqrt(num)): if num % prime_list[i] == 0: isprime = False break i = i + 1 return isprime # def is_prime(num): # f = 5 # isprime = True # r = int(math.sqrt(num)) + 1 # if num % 2 == 0 or num % 3 == 0: # return False # while f <= r: # if num % f == 0: # isprime = False # elif num % (f + 2) == 0: # isprime = False # f = f + 6 # return isprime # Wilson' theroem # def factorial(n): # if (n == 1): # return n # else: # return n * factorial(n - 1) # def is_prime(num): # if (factorial(num - 1) + 1) % num == 0: # return True # else: # return False # Fermat's little theroem # def FermatPrimalityTest(number): # for time in range(10): # randomNumber = random.randint(2, number - 1) # if ( pow(randomNumber, number-1, number) != 1 ): # return False # return True number_of_prime = 2 num = 5 while True: if is_prime(num): prime_list.append(num) number_of_prime = number_of_prime + 1 if number_of_prime == 40001: print num break # if is_prime(num) == False and FermatPrimalityTest(num) == True: # print num num = num + 2